Search results for "Variational solitary waves"
showing 3 items of 3 documents
Regular and singular pulse and front solutions and possible isochronous behavior in the short-pulse equation: Phase-plane, multi-infinite series and …
2014
In this paper we employ three recent analytical approaches to investigate the possible classes of traveling wave solutions of some members of a family of so-called short-pulse equations (SPE). A recent, novel application of phase-plane analysis is first employed to show the existence of breaking kink wave solutions in certain parameter regimes. Secondly, smooth traveling waves are derived using a recent technique to derive convergent multi-infinite series solutions for the homoclinic (heteroclinic) orbits of the traveling-wave equations for the SPE equation, as well as for its generalized version with arbitrary coefficients. These correspond to pulse (kink or shock) solutions respectively o…
Regular and singular pulse and front solutions and possible isochronous behavior in the Extended-Reduced Ostrovsky Equation: Phase-plane, multi-infin…
2016
In this paper we employ three recent analytical approaches to investigate several classes of traveling wave solutions of the so-called extended-reduced Ostrovsky Equation (exROE). A recent extension of phase-plane analysis is first employed to show the existence of breaking kink wave solutions and smooth periodic wave (compacton) solutions. Next, smooth traveling waves are derived using a recent technique to derive convergent multi-infinite series solutions for the homoclinic orbits of the traveling-wave equations for the exROE equation. These correspond to pulse solutions respectively of the original PDEs. We perform many numerical tests in different parameter regime to pinpoint real saddl…
Corrigendum to “Regular and singular pulse and front solutions and possible isochronous behavior in the short-pulse equation: Phase-plane, multi-infi…
2022
Section 7 of the original paper contained several errors which are corrected here. Equations (54) and (55) are incorrect. In the following, the corrected versions of these equations are given and the subsequent results of Section 7 are also revised.